A course of study that prepares the students to apply basic engineering principles and technical skills in electrical maintenance and management or in the design, planning, construction, development, and installation of electrical systems, machines, and power generating equipment. Includes instruction in electrical circuitry, prototype development and testing, systems analysis and testing, systems maintenance, instrument calibration, and report preparation.
Graduates may seek employment as technicians, engineering assistants, technical managers, or salespersons in electrical generation/distribution, industrial maintenance, electronic repair, or other fields requiring a broad-based knowledge of electrical and electronic concepts
Specific Requirements
Courses requiring a grade of “C” or better: DFT, EGR, ELC, ELN, and WBL
Courses in this program
Course Code | Course | Credit Hours | Link to course details |
---|---|---|---|
CET-111 | 3 | ||
This course covers repairing, servicing, and upgrading computers and peripherals in preparation for industry certification. Topics include CPU/memory/bus identification, disk subsystems, hardware/software installation/configuration, common device drivers, data recovery, system maintenance, and other related topics. Upon completion, students should be able to safely repair and/or upgrade computer systems to perform within specifications. |
|||
EGR-110 | 2 | ||
This course introduces general topics relevant to engineering technology. Skills developed include goal setting and career assessment, professional ethics, critical thinking and problem solving, using college resources for study and research, and using tools for engineering computations. Upon completion, students should be able to choose a career option in engineering technology and utilize college resources to meet their educational goals. |
|||
ELC-111 | 3 | ||
This course introduces the fundamental concepts of electricity and test equipment to nonelectrical/electronic majors. Topics include basic DC and AC principles (voltage, resistance, current, impedance); components (resistors, inductors, and capacitors); power; and operation of test equipment. Upon completion, students should be able to construct and analyze simple DC and AC circuits using electrical test equipment. |
|||
ENG-111 | 3 | ||
This course is designed to develop the ability to produce clear writing in a variety of genres and formats using a recursive process. Emphasis includes inquiry, analysis, effective use of rhetorical strategies, thesis development, audience awareness, and revision. Upon completion, students should be able to produce unified, coherent, well-developed essays using standard written English. This is a Universal General Education Transfer Component (UGETC) course that satisfies English Composition. |
|||
MAT-121 | 3 | ||
This course provides an integrated approach to technology and the skills required to manipulate, display, and interpret mathematical functions and formulas used in problem-solving. Topics include basic geometric and proportion applications; simplification, evaluation, and solving of algebraic and radical functions; complex numbers; right triangle trigonometry; and systems of equations. Upon completion, students should be able to demonstrate the ability to use mathematics and technology for problem-solving, analyzing and communicating results. |
Course Code | Course | Credit Hours | Link to course details |
---|---|---|---|
DFT-151 | 3 | ||
This course introduces CAD software as a drawing tool. Topics include drawing, editing, file management, and plotting. Upon completion, students should be able to produce and plot a CAD drawing. |
|||
ELC-131 | 4 | ||
This course introduces DC and AC electricity with an emphasis on circuit analysis, measurements, and operation of test equipment. Topics include DC and AC principles, circuit analysis laws and theorems, components, test equipment operation, circuit simulation, and other related topics. Upon completion, students should be able to interpret circuit schematics; design, construct, verify, and analyze DC/AC circuits; and properly use test equipment. |
|||
ELN-152 | 2 | ||
This course covers the fabrication methods required to create a prototype product from the initial circuit design. Topics include CAD, layout, sheet metal working, component selection, wire wrapping, PC board layout and construction, reverse engineering, soldering, and other related topics. Upon completion, students should be able to design and construct an electronic product with all its associated documentation. |
|||
ISC-135 | 4 | ||
This course covers the managerial principles and practices required for organizations to succeed in modern industry, including quality and productivity improvement. Topics include the functions and roles of all levels of the management, organization design, planning and control of the manufacturing operation, managing conflict, group dynamics, and problem-solving skills. Upon completion, students should be able to demonstrate an understanding of management principles and integrate these principles into job situations. |
|||
MAT-122 | 3 | ||
This course extends the concepts covered in MAT-121 to include additional topics in algebra, function analysis, and trigonometry. Topics include exponential and logarithmic functions, transformations of functions, Law of Sines, Law of Cosines, vectors, and statistics. Upon completion, students should be able to demonstrate the ability to use mathematics and technology for problem-solving, analyzing and communicating results. |
Course Code | Course | Credit Hours | Link to course details |
---|---|---|---|
ELC-117 | 4 | ||
This course introduces the fundamental concepts of motors and motor controls. Topics include ladder diagrams, pilot devices, contactors, motor starters, motors, and other control devices. Upon completion, students should be able to properly select, connect, and troubleshoot motors and control circuits. |
|||
ELC-127 | 2 | ||
This course introduces computer software which can be used to solve electrical/electronics problems. Topics include electrical/electronics calculations and applications. Upon completion, students should be able to utilize a personal computer for electrical/electronics- related applications |
|||
HUM-110 | 3 | ||
This course considers technological change from historical, artistic, and philosophical perspectives and its effect on human needs and concerns. Emphasis is placed on the causes and consequences of technological change. Upon completion, students should be able to critically evaluate the implications of technology. This course has been approved for transfer under the CAA as a general education course in Humanities/Fine Arts. |
|||
PHY-151 | 4 | ||
This course uses algebra- and trigonometry-based mathematical models to introduce the fundamental concepts that describe the physical world. Topics include units and measurement, vectors, linear kinematics and dynamics, energy, power, momentum, fluid mechanics, and heat. Upon completion, students should be able to demonstrate an understanding of the principles involved and display analytical problem-solving ability for the topics covered. This is a Universal General Education Transfer Component (UGETC) course that satisfies Natural Sciences for the Associates in Science Degree. |
|||
PSY-150 | 3 | ||
This course provides an overview of the scientific study of human behavior. Topics include history, methodology, biopsychology, sensation, perception, learning, motivation, cognition, abnormal behavior, personality theory, social psychology, and other relevant topics. Upon completion, students should be able to demonstrate a basic knowledge of the science of psychology. This is a Universal General Education Transfer Component (UGETC) course that satisfies Social/Behavioral Sciences. |
Course Code | Course | Credit Hours | Link to course details |
---|---|---|---|
COM-231 | 3 | ||
This course provides instruction and experience in preparation and delivery of speeches within a public setting and group discussion. Emphasis is placed on research, preparation, delivery, and evaluation of informative, persuasive, and special occasion public speaking. Upon completion, students should be able to prepare and deliver well-organized speeches and participate in a group discussion with appropriate audiovisual support. This is a Universal General Education Transfer Component (UGETC) course that satisfies Communication. |
|||
ELC-128 | 3 | ||
This course introduces the programmable logic controller (PLC) and its associated applications. Topics include ladder logic diagrams, input/output modules, power supplies, surge protection, selection/installation of controllers, and interfacing of controllers with equipment. Upon completion, students should be able to install PLCs and create simple programs. |
|||
ELN-131 | 4 | ||
This course introduces the characteristics and applications of semiconductor devices and circuits. Emphasis is placed on analysis, selection, biasing, and applications. Upon completion, students should be able to construct, analyze, verify, and troubleshoot analog circuits using appropriate techniques and test equipment. |
|||
ELN-133 | 4 | ||
This course covers combinational and sequential logic circuits. Topics include number systems, Boolean algebra, logic families, MSI and LSI circuits, AC/DC converters, and other related topics. Upon completion, students should be able to construct, analyze, verify, and troubleshoot digital circuits using appropriate techniques and test equipment. |
Elective: CET-125, CET-161, ELC-213, ELC-225, ELC-228, ELC-229, ELN-237, ISC-112, MAT-271, PHY-152, SST-120, WBL-111/112.
Course Code | Course | Credit Hours | Link to course details |
---|---|---|---|
ELC-228 | 4 | ||
This course covers programming and applications of programmable logic controllers. Emphasis is placed on programming techniques, networking, specialty I/O modules, and system troubleshooting. Upon completion, students should be able to specify, implement, and maintain complex PLC controlled systems. |
|||
ELN-133A | 1 | ||
This course is a laboratory to accompany ELN-133. Emphasis is placed on laboratory experiences that enhance the materials presented in ELN-133 and which provide practical experience. Upon completion, students should be able to demonstrate a general understanding of digital fundamentals. |
|||
ELN-232 | 4 | ||
This course introduces microprocessor architecture and microcomputer systems including memory and input/output interfacing. Topics include assembly language programming, bus architecture, bus cycle types, I/O systems, memory systems, interrupts, and other related topics. Upon completion, students should be able to interpret, analyze, verify, and troubleshoot fundamental microprocessor circuits and programs using appropriate techniques and test equipment. |
|||
ELN-234 | 4 | ||
This course introduces the fundamentals of electronic communication systems. Topics include the frequency spectrum, electrical noise, modulation techniques, characteristics of transmitters and receivers, and digital communications. Upon completion, students should be able to interpret analog and digital communication circuit diagrams, analyze transmitter and receiver circuits, and use appropriate communication test equipment. |
See advisor for General Education substitutes.
Students seeking a transfer for a bachelor’s degree in engineering technology should consult their advisor about the Math requirements at the transfer university.
Curriculum is based on the 2023-24 catalog.
Get insight on 12 Electronics Engineering career choices, and find what's right for you