Mechatronics Engineering Technology A.A.S.

Student Using Robot Arm
Program Code: A40350

Mechatronics Engineering Technology A.A.S.

Mechatronics Engineering Technology prepares the students to use basic engineering principles and technical skills in developing and testing automated, servo-mechanical, and other electromechanical systems. Includes instruction in prototype testing, manufacturing and operational testing, systems analysis, and maintenance procedures.

Graduates should be qualified for employment in industrial maintenance and manufacturing including assembly, testing, startup, troubleshooting, repair, process improvement, and control systems, and should qualify to sit for Packaging Machinery Manufacturers Institute (PMMI) mechatronics or similar industry examinations.

Specific Requirements

Courses requiring a grade of “C” or better: ATR, BPR, DFT, EGR, ELC, HYD, ISC, MEC, MNT, WBL, and WLD

Courses in this program

Course Code Course Credit Hours Link to course details

This course introduces computer concepts, including fundamental functions and operations of the computer. Topics include the identification of hardware components, basic computer operations, security issues, and use of software applications. Upon completion, students should be able to demonstrate an understanding of the role and function of computers and use the computer to solve problems. Microsoft Office will be used in this course; this includes Word, Excel, Access, and PowerPoint.

This course is an introduction to basic three-dimensional solid modeling and design software. Topics include basic design, creation, editing, rendering and analysis of solid models and creation of multiview drawings. Upon completion, students should be able to use design techniques to create, edit, render and generate a multiview drawing.

This course introduces general topics relevant to engineering technology. Skills developed include goal setting and career assessment, professional ethics, critical thinking and problem solving, using college resources for study and research, and using tools for engineering computations. Upon completion, students should be able to choose a career option in engineering technology and utilize college resources to meet their educational goals.

This course introduces the fundamental concepts of electricity and test equipment to nonelectrical/electronic majors. Topics include basic DC and AC principles (voltage, resistance, current, impedance); components (resistors, inductors, and capacitors); power; and operation of test equipment. Upon completion, students should be able to construct and analyze simple DC and AC circuits using electrical test equipment.

This course is designed to develop the ability to produce clear writing in a variety of genres and formats using a recursive process. Emphasis includes inquiry, analysis, effective use of rhetorical strategies, thesis development, audience awareness, and revision. Upon completion, students should be able to produce unified, coherent, well-developed essays using standard written English. This is a Universal General Education Transfer Component (UGETC) course that satisfies English Composition.

This course covers the basic principles of blueprint reading and sketching. Topics include multi-view drawings; interpretation of conventional lines; and dimensions, notes, and thread notations. Upon completion, students should be able to interpret basic drawings, visualize parts, and make pictorial sketches.

Course Code Course Credit Hours Link to course details

This course provides instruction and experience in preparation and delivery of speeches within a public setting and group discussion. Emphasis is placed on research, preparation, delivery, and evaluation of informative, persuasive, and special occasion public speaking. Upon completion, students should be able to prepare and deliver well-organized speeches and participate in a group discussion with appropriate audiovisual support. This is a Universal General Education Transfer Component (UGETC) course that satisfies Communication.

This course introduces the basic components and functions of hydraulic and pneumatic systems. Topics include standard symbols, pumps, control valves, control assemblies, actuators, FRL, maintenance procedures, and switching and control devices. Upon completion, students should be able to understand the operation of a fluid power system, including design, application, and troubleshooting.

This course introduces CAD/CAM. Emphasis is placed on transferring part geometry from CAD to CAM for the development of a CNC-ready program. Upon completion, students should be able to use CAD/CAM software to produce a CNC program.

This course introduces the purpose and action of various mechanical devices. Topics include cams, cables, gear trains, differentials, screws, belts, pulleys, shafts, levers, lubricants, and other devices. Upon completion, students should be able to analyze, maintain, and troubleshoot the components of mechanical systems.

This course introduces basic welding and cutting. Emphasis is placed on beads applied with gases, mild steel fillers, and electrodes and the capillary action of solder. Upon completion, students should be able to set up welding and oxy-fuel equipment and perform welding, brazing, and soldering processes.

Course Code Course Credit Hours Link to course details

This course introduces the fundamental concepts of motors and motor controls. Topics include ladder diagrams, pilot devices, contactors, motor starters, motors, and other control devices. Upon completion, students should be able to properly select, connect, and troubleshoot motors and control circuits.

This course introduces the use of critical thinking skills in the context of human conflict. Emphasis is placed on evaluating information, problem-solving, approaching cross-cultural perspectives, and resolving controversies and dilemmas. Upon completion, students should be able to demonstrate orally and in writing the use of critical thinking skills in the analysis of appropriate texts. This course has been approved for transfer under the CAA as a general education course in Humanities/Fine Arts.

This course provides an overview of the scientific study of human behavior. Topics include history, methodology, biopsychology, sensation, perception, learning, motivation, cognition, abnormal behavior, personality theory, social psychology, and other relevant topics. Upon completion, students should be able to demonstrate a basic knowledge of the science of psychology. This is a Universal General Education Transfer Component (UGETC) course that satisfies Social/Behavioral Sciences.

Course Code Course Credit Hours Link to course details

This course introduces the basic principles of automated systems and describes the tasks that technicians perform on the job. Topics include the history, development, and current applications of robots and automated systems including their configuration, operation, components, and controls.

This course provides a detailed study of PLC applications, with a focus on design of industrial controls using the PLC. Topics include PLC components, memory organization, math instructions, documentation, input/output devices, and applying PLCs in industrial control systems. Upon completion, students should be able to select and program a PLC system to perform a wide variety of industrial control functions.
 

This course covers workplace environmental health and safety concepts. Emphasis is placed on managing the implementation and enforcement of environmental health and safety regulations and on preventing accidents, injuries, and illnesses. Upon completion, students should be able to demonstrate an understanding of the basic concepts of environmental health and safety.

This is the first of a two-course sequence designed to develop topics that are fundamental to the study of Calculus. Emphasis is placed on solving equations and inequalities, solving systems of equations and inequalities, and analysis of functions (absolute value, radical, polynomial, rational, exponential, and logarithmic) in multiple representations. Upon completion, students will be able to select and use appropriate models and techniques for finding solutions to algebra-related problems with and without technology.

Course Code Course Credit Hours Link to course details

This course covers the operation of advanced industrial robots. Topics include the classification of robots, activators, grippers, work envelopes, computer interfaces, overlapping work envelopes, installation, and programming. Upon completion, students should be able to install, program, and troubleshoot industrial robots.

This course covers the fundamentals of instrumentation used in the industry. Emphasis is placed on electric, electronic, and pneumatic instruments. Upon completion, students should be able to design, install, maintain, and calibrate instrumentation.

This course covers programming and applications of programmable logic controllers. Emphasis is placed on programming techniques, networking, specialty I/O modules, and system troubleshooting. Upon completion, students should be able to specify, implement, and maintain complex PLC controlled systems.

This course uses algebra- and trigonometry-based mathematical models to introduce the fundamental concepts that describe the physical world. Topics include units and measurement, vectors, linear kinematics and dynamics, energy, power, momentum, fluid mechanics, and heat. Upon completion, students should be able to demonstrate an understanding of the principles involved and display analytical problem-solving ability for the topics covered. This is a Universal General Education Transfer Component (UGETC) course that satisfies Natural Sciences for the Associates in Science Degree.

Total Credit Hours Required:
68

Curriculum is based on the 2024-2025 catalog.

Good To Know

Why General Education?

You may be asking yourself, “Why do I have to take (course name) when it is not directly related to my major?”

General Education courses will help you develop skills necessary to be successful in your major and in life. General Education can teach you how to talk to your employer, write a paper in a major course, understand interest rates on your car, and much more. General Education can also give you the skills to be a better member of society and a more informed citizen. Critical thinking, global understanding, and appreciation for the human experience are hallmarks of a well-rounded education.

How many hours of General Education do I have to take?

If you are enrolled in an Associate of Applied Science Degree program, a minimum of 15 general education hours are required in the following categories:

  • Six hours from Communication
  • Three hours from Humanities & Fine Arts
  • Three hours from Social & Behavioral Science
  • Three hours from Natural Science & Mathematics

General Education courses have been pre-selected for you by your faculty from the following list:

CommunicationHumanities & Fine ArtsSocial & Behavioral ScienceNatural Science & Mathematics
COM-110ART-111ECO-251BIO-161
COM-120ART-114ECO-252BIO-163
COM-231ART-115HIS-111BIO-168
ENG-110HUM-110HIS-112MAT-110
ENG-111HUM-115HIS-131MAT-121
ENG-112MUS-110HIS-132MAT-143
ENG-114MUS-112POL-120MAT-152
 PHI-215PSY-150MAT-171
 PHI-240SOC-210PHY-110/110A
  SOC-225PHY-121

 

Degrees designed to transfer to universities require more general education hours. If you are enrolled in the Associate in Arts or Associate in Science, you are required to take 45 hours of General Education from the following categories:

  • Six hours in English Composition
  • Six to nine hours in Communication/Humanities & Fine Arts
  • Six to nine hours in Social & Behavioral Sciences
  • Three to eight hours in Mathematics
  • Four to eight hours in Natural Sciences
  • 11 to 14 additional General Education hours

If you are enrolled in the Associate in Engineering, you are required to take 42 general education hours from the following:

  • Six hours in English Composition
  • Six hours in Communication/Humanities & Fine Arts
  • Six work hours in Social & Behavioral Sciences
  • 12 hours in Mathematics
  • 12 hours in Natural Sciences

If you are enrolled in the Associate in Fine Arts in Visual Arts, you are required to take 25 general education hours from the following:

  • Six hours in English Composition
  • Six hours in Communication/Humanities & Fine Arts
  • Six hours in Social & Behavioral Sciences
  • Three to four hours in Mathematics
  • Four hours in Natural Sciences

Additional information about General Education for transfer degrees, including courses that satisfy each category, may be found in the current College Catalog.

What will I learn in General Education?

At A-B Tech, our faculty have designed a general education core so that A-B Tech graduates will learn the following:

Students will critically evaluate information:

  • Students will demonstrate information literacy.
  • Students will critique works of human expression.
  • Students will analyze scientific literature.

Students will solve problems:

  • Students will identify processes.
  • Students will analyze problems.
  • Students will interpret the results.
  • Students will recommend appropriate strategies or solutions.

Students will effectively communicate.

  • Students will communicate appropriately about the subject.
  • Students will communicate appropriately with the audience.
  • Students will communicate appropriately for the medium.

Ever wonder how A-B Tech awards credit for a certain course?

A-B Tech complies with the North Carolina State Board of Community Colleges Code, so your courses are assigned the course level and receive the same amount of credit as courses at all 58 North Carolina Community Colleges.

If you want to read more about this, see the A-B Tech Policy and Procedure for the Assignment of Course Level Credit.